

nagiosplugin Documentation

This documentation covers nagiosplugin 1.3.0.

Contents

	The nagiosplugin library
	About

	Feedback and Suggestions

	License

	Documentation

	Acknowledgements

	First steps with nagiosplugin
	Key concepts

	Classes overview

	Tutorials

	Topic Guides
	Plugin Debugging

	API docs
	Core API

	Intermediate data API

	Auxiliary Classes

	Glossary

	Release History
	1.3.0 (2019-11-08)

	1.2.4 (2016-03-12)

	1.2.3 (2015-10-30)

	1.2.2 (2014-05-27)

	1.2.1 (2014-03-19)

	1.2 (2013-11-08)

	1.1 (2013-06-19)

	1.1b1 (2013-05-28)

	1.0.0 (2013-02-05)

	1.0.0b1 (2012-10-29)

	1.0.0a2 (2012-10-26)

	1.0.0a1 (2012-10-25)

	0.4.5 (2012-06-18)

	0.4.4 (2011-07-18)

	0.4.3 (2010-12-17)

	0.4.2 (2010-10-11)

	0.4.1 (2010-09-21)

	0.4 (2010-08-17)

Indices and tables

	Index

	Search Page

To download the package, see the PyPI page [https://pypi.python.org/pypi/nagiosplugin].

The nagiosplugin library

About

nagiosplugin is a Python class library which helps writing Nagios (or Icinga)
compatible plugins easily in Python. It cares for much of the boilerplate code
and default logic commonly found in Nagios checks, including:

	Nagios 3 Plugin API compliant parameters and output formatting

	Full Nagios range syntax support

	Automatic threshold checking

	Multiple independend measures

	Custom status line to communicate the main point quickly

	Long output and performance data

	Timeout handling

	Persistent “cookies” to retain state information between check runs

	Resume log file processing at the point where the last run left

	No dependencies beyond the Python standard library (except for Python 2.6).

nagiosplugin runs on POSIX and Windows systems. It is compatible with Python
3.4, Python 3.3, Python 3.2, and Python 2.7.

Feedback and Suggestions

nagiosplugin is currently maintained by Matt Pounsett <matt@conundrum.com>. A
public issue tracker can be found at
<https://github.com/mpounsett/nagiosplugin/issues> for bugs, suggestions, and
patches.

License

The nagiosplugin package is released under the Zope Public License 2.1 (ZPL), a
BSD-style Open Source license.

Documentation

Comprehensive documentation is available online [http://pythonhosted.org/nagiosplugin/]. The examples mentioned in
the tutorials [http://pythonhosted.org/nagiosplugin/tutorial/] can also be found in the nagiosplugin/examples directory of
the source distribution.

Acknowledgements

nagiosplugin was originally written and maintained by Christian Kauhaus
<kc@flyingcircus.io>. Additional contributions from the community are
acknowledged in the file CONTRIBUTORS.txt

First steps with nagiosplugin

This tutorial will guide you through all important steps of writing a check with
the nagiosplugin class library. Read this to get started.

Key concepts

nagiosplugin has a fine-grained class model with clear separation of
concerns. This allows plugin writers to focus on one
particular tasks at a time while writing plugins. Nagios/Icinga plugins need to
perform three step: data acquisition, evaluation, and
presentation. Each step has an associated class (Resource, Context,
Summary) and information between tasks is passed with structured value objects
(Metric, Result).

Classes overview

Here is a diagram with the most important classes and their relationships:

 +----------+ \
 | Resource | |
 +----------+ |
 _____/ | _____ | Acquisition
 v v v |
+---------+ +---------+ +---------+ |
| Metric |...| Metric |...| Metric | <
+---------+ +---------+ +---------+ |
 | | | |
 v v v |
+---------+ +---------+ +---------+ |
| Context |...| Context |...| Context | | Evaluation
+---------+ +---------+ +---------+ |
 | | | |
 v v v |
+---------+ +---------+ +---------+ |
| Result |...| Result |...| Result | <
+---------+ +---------+ +---------+ |
 ___ | ___/ |
 v v v | Presentation
 +---------+ |
 | Summary | |
 +---------+ /

	Resource

	A model of the thing being monitored. It should usually have the same name
as the whole plugin. Generates one or more metrics.

Example: system load

	Metric

	A single measured data point. A metric consists of a name, a value, a unit,
and optional minimum and maximum bounds. Most metrics are scalar (the value
can be represented as single number).

Example: load1=0.75

	Context

	Additional information to evaluate a metric. A context has usually a warning
and critical range which allows to determine if a given metric is OK or not.
Contexts also include information on how to present a metric in a
human-readable way.

Example: warning=0.5, critical=1.0

	Result

	Product of a metric and a context. A result consists of a state (“ok”,
“warning”, “critical”, “unknown”), some explanatory text, and references to
the objects that it was generated from.

Example: WARNING - load1 is 0.75

	Summary

	Condenses all results in a single status line. The status line is the
plugin’s most important output: it appears in mails, text messages,
pager alerts etc.

Example: LOAD WARNING - load1 is 0.75 (greater than 0.5)

The following tutorials which will guide you through the most important
features of nagiosplugin.

Hint

Study the source code in the nagiosplugin/examples directory for
complete examples.

Tutorials

	Tutorial #1: ‘Hello world’ check

	Tutorial #2: check_load
	Data acquisition

	Evaluation

	Result presentation

	Check setup

	Tutorial #3: check_users
	Multiple metrics

	Multiple contexts

	Logging and verbosity levels

Tutorial #1: ‘Hello world’ check

In the first tutorial, we will develop check_world. This check will determine
if the world exists. The algorithm is simple: if the world would not exist, the
check would not execute.

This minimalistic check consists of a Resource World which models
the part of the world that is interesting for the purposes of our check.
Resource classes must define a Resource.probe() method which returns a
list of metrics. We just return a single Metric object that states
that the world exists.

#!python

"""Hello world Nagios check."""

import nagiosplugin

class World(nagiosplugin.Resource):

 def probe(self):
 return [nagiosplugin.Metric('world', True, context='null')]

def main():
 check = nagiosplugin.Check(World())
 check.main()

if __name__ == '__main__':
 main()

We don’t have a context to evaluate the returned metric yet, so we resort to the
built-in “null” context. The “null” context does nothing with its associated
metrics.

We now create a Check object that is fed only with the resource
object. We could put context and summary objects into the Check()
constructor as well. This will be demonstrated in the next tutorial. There is
also no command line processing nor timeout handling nor output control. We call
the Check.main() method to evaluate resources, construct text output
and exit with the appropriate status code.

Running the plugin creates very simple output:

	1
2

	$ check_world.py
WORLD OK

The plugin’s exit status is 0, signalling success to the calling process.

Tutorial #2: check_load

In this tutorial, we will discuss important basic features that are present in
nearly every check. These include command line processing, metric evaluation
with scalar contexts, status line formatting and logging.

The check_load plugin resembles the one found in the standard Nagios
plugins collection. It allows to check the system load average against
thresholds.

Data acquisition

First, we will subclass Resource to generate metrics for the 1,
5, and 15 minute load averages.

class Load(nagiosplugin.Resource):
 """Domain model: system load.

 Determines the system load parameters and (optionally) cpu count.
 The `probe` method returns the three standard load average numbers.
 If `percpu` is true, the load average will be normalized.

 This check requires Linux-style /proc files to be present.
 """

 def __init__(self, percpu=False):
 self.percpu = percpu

 def cpus(self):
 _log.info('counting cpus with "nproc"')
 cpus = int(subprocess.check_output(['nproc']))
 _log.debug('found %i cpus in total', cpus)
 return cpus

 def probe(self):
 _log.info('reading load from /proc/loadavg')
 with open('/proc/loadavg') as loadavg:
 load = loadavg.readline().split()[0:3]
 _log.debug('raw load is %s', load)
 cpus = self.cpus() if self.percpu else 1
 load = [float(l) / cpus for l in load]
 for i, period in enumerate([1, 5, 15]):
 yield nagiosplugin.Metric('load%d' % period, load[i], min=0,
 context='load')

check_load has two modes of operation: the load averages may either
be takes as read from the kernel or normalized by cpu. Accordingly, the
Load() constructor has a parameter two switch normalization on.

In the Load.probe() method the check reads the load averages from the
/proc filesystem and extracts the interesting values. For each value, a
Metric object is returned. Each metric has a generated name
(“load1”, “load5”, “load15”) and a value. We don’t declare a unit of measure
since load averages come without unit. All metrics will share the same context
“load” which means that the thresholds for all three values will be the same.

Note

Deriving the number of CPUs from /proc is a little bit messy and
deserves an extra method. Resource classes may encapsulate arbitrary complex
measurement logic as long they define a Resource.probe() method that
returns a list of metrics. In the code example shown above, we sprinkle some
logging statements which show effects when the check is called with an
increased logging level (discussed below).

Evaluation

The check_load plugin should accept warning and critical ranges and
determine if any load value is outside these ranges. Since this kind of logic is
pretty standard for most of all Nagios/Icinga plugins,
nagiosplugin provides a generalized context class for it. It is
the ScalarContext class which accepts a warning
and a critical range as well as a template to present metric values in a
human-readable way.

When ScalarContext is sufficient, it may be
configured during instantiation right in the main function. A first
version of the main function looks like this:

def main():
 argp = argparse.ArgumentParser(description=__doc__)
 argp.add_argument('-w', '--warning', metavar='RANGE', default='',
 help='return warning if load is outside RANGE')
 argp.add_argument('-c', '--critical', metavar='RANGE', default='',
 help='return critical if load is outside RANGE')
 argp.add_argument('-r', '--percpu', action='store_true', default=False)
 args = argp.parse_args()
 check = nagiosplugin.Check(
 Load(args.percpu),
 nagiosplugin.ScalarContext('load', args.warning, args.critical))
 check.main()

Note that the context name “load” is referenced by all three metrics returned by
the Load.probe method.

This version of check_load is already functional:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	$./check_load.py
LOAD OK - load1 is 0.11
| load15=0.21;;;0 load1=0.11;;;0 load5=0.18;;;0

$./check_load.py -c 0.1:0.2
LOAD CRITICAL - load15 is 0.22 (outside 0.1:0.2)
| load15=0.22;;0.1:0.2;0 load1=0.11;;0.1:0.2;0 load5=0.2;;0.1:0.2;0
exit status 2

$./check_load.py -c 0.1:0.2 -r
LOAD OK - load1 is 0.105
| load15=0.11;;0.1:0.2;0 load1=0.105;;0.1:0.2;0 load5=0.1;;0.1:0.2;0

In the first invocation (lines 1–3), check_load reports only the
first load value which looks bit arbitrary. In the second invocation (lines
5–8), we set a critical threshold. The range specification is parsed
automatically according to the Nagios plugin API and the first metric
that lies outside is reported. In the third invocation (lines 10–12), we
request normalization and all values fit in the range this time.

Result presentation

Although we now have a running check, the output is not as informative as it
could be. The first line of output (status line) is very important since the
information presented therein should give the admin a clue what is going on.
We want the first line to display:

	a load overview when there is nothing wrong

	which load value violates a threshold, if applicable

	which threshold is being violated, if applicable.

The last two points are already covered by the Result default
implementation, but we need to tweak the summary to display a load overview
as stated in the first point:

class LoadSummary(nagiosplugin.Summary):
 """Status line conveying load information.

 We specialize the `ok` method to present all three figures in one
 handy tagline. In case of problems, the single-load texts from the
 contexts work well.
 """

 def __init__(self, percpu):
 self.percpu = percpu

 def ok(self, results):
 qualifier = 'per cpu ' if self.percpu else ''
 return 'loadavg %sis %s' % (qualifier, ', '.join(
 str(results[r].metric) for r in ['load1', 'load5', 'load15']))

The Summary class has three methods which can be
specialized: ok() to return a status line
when there are no problems, problem() to
return a status line when the overall check status indicates problems, and
verbose() to generate additional output. All
three methods get a set of Result objects passed
in. In our code, the ok method queries uses the original metrics referenced by
the result objects to build an overview like “loadavg is 0.19, 0.16, 0.14”.

Check setup

The last step in this tutorial is to put the pieces together:

@nagiosplugin.guarded
def main():
 argp = argparse.ArgumentParser(description=__doc__)
 argp.add_argument('-w', '--warning', metavar='RANGE', default='',
 help='return warning if load is outside RANGE')
 argp.add_argument('-c', '--critical', metavar='RANGE', default='',
 help='return critical if load is outside RANGE')
 argp.add_argument('-r', '--percpu', action='store_true', default=False)
 argp.add_argument('-v', '--verbose', action='count', default=0,
 help='increase output verbosity (use up to 3 times)')
 args = argp.parse_args()
 check = nagiosplugin.Check(
 Load(args.percpu),
 nagiosplugin.ScalarContext('load', args.warning, args.critical),
 LoadSummary(args.percpu))
 check.main(verbose=args.verbose)

if __name__ == '__main__':
 main()

In the main() function we parse the command line parameters using the
standard argparse.ArgumentParser class. Watch the
Check object creation: its constructor can be fed
with a variable number of Resource,
Context, and
Summary objects. In this tutorial, instances of
our specialized Load and LoadSummary classes go in.

We did not specialize a Context class to evaluate
the load metrics. Instead, we use the supplied
ScalarContext which compares a scalar value
against two ranges according to the range syntax defined by the Nagios plugin
API. The default ScalarContext
implementation covers the majority of evaluation needs. Checks using non-scalar
metrics or requiring special logic should subclass
Context to fit their needs.

The check’s main() method runs the check, prints
the check’s output including summary, log messages and performance data
to stdout and exits the plugin with the appropriate exit code.

Note the guarded() decorator in front of the main
function. It helps the code part outside Check to
behave: in case of uncaught exceptions, it ensures that the exit code is 3
(unknown) and that the exception string is properly formatted. Additionally,
logging is set up at an early stage so that even messages logged from
constructors are captured and printed at the right place in the output (between
status line and performance data).

Tutorial #3: check_users

In the third tutorial, we will learn how to process multiple metrics.
Additionally, we will see how to use logging and verbosity levels.

Multiple metrics

A plugin can perform several measurements at once. This is often necessary to
perform more complex state evaluations or improve latency. Consider a check that
determines both the number of total logged in users and the number of unique
logged in users.

A Resource implementation could look like this:

class Users(nagiosplugin.Resource):

 def __init__(self):
 self.users = []
 self.unique_users = set()

 def list_users(self):
 """Return logged in users as list of user names."""
 [...]
 return users

 def probe(self):
 """Return both total and unique user count."""
 self.users = self.list_users()
 self.unique_users = set(self.users)
 return [nagiosplugin.Metric('total', len(self.users), min=0,
 context='users'),
 nagiosplugin.Metric('unique', len(self.unique_users), min=0,
 context='users')]

The probe() method returns a list containing two metric objects.
Alternatively, the probe() method can act as generator and yield
metrics:

def probe(self):
 """Return both total and unique user count."""
 self.users = self.list_users()
 self.unique_users = set(self.users)
 yield nagiosplugin.Metric('total', len(self.users), min=0,
 context='users')
 yield nagiosplugin.Metric('unique', len(self.unique_users), min=0,
 context='users')]

This may be more comfortable than constructing a list of metrics first and
returning them all at once.

To assign a Context to a
Metric, pass the context’s name in the metric’s
context parameter. Both metrics use the same context “users”. This way, the
main function must define only one context that applies the same thresholds to
both metrics:

@nagiosplugin.guarded
def main():
 argp = argparse.ArgumentParser()
 [...]
 args = argp.parse_args()
 check = nagiosplugin.Check(
 Users(),
 nagiosplugin.ScalarContext('users', args.warning, args.critical,
 fmt_metric='{value} users logged in'))
 check.main()

Multiple contexts

The above example defines only one context for all metrics. This may not be
practical. Each metric should get its own context now. By default, a metric is
matched by a context of the same name. So we just leave out the context
parameters:

def probe(self):
 [...]
 return [nagiosplugin.Metric('total', len(self.users), min=0),
 nagiosplugin.Metric('unique', len(self.unique_users), min=0)]

We then define two contexts (one for each metric) in the main() function:

@nagiosplugin.guarded
def main():
 [...]
 args = argp.parse_args()
 check = nagiosplugin.Check(
 Users(),
 nagiosplugin.ScalarContext('total', args.warning, args.critical,
 fmt_metric='{value} users logged in'),
 nagiosplugin.ScalarContext(
 'unique', args.warning_unique, args.critical_unique,
 fmt_metric='{value} unique users logged in'))
 check.main(args.verbose, args.timeout)

Alternatively, we can require every context that fits in metric definitions.

Logging and verbosity levels

nagiosplugin integrates with the logging [http://docs.python.org/3/library/logging.html] module from Python’s standard
library. If the main function is decorated with guarded (which is heavily
recommended), the logging module gets automatically configured before the
execution of the main() function starts. Messages logged to the nagiosplugin
logger (or any sublogger) are processed with nagiosplugin’s integrated logging.

Consider the following example check:

import argparse
import nagiosplugin
import logging

_log = logging.getLogger('nagiosplugin')

class Logging(nagiosplugin.Resource):

 def probe(self):
 _log.warning('warning message')
 _log.info('info message')
 _log.debug('debug message')
 return [nagiosplugin.Metric('zero', 0, context='default')]

@nagiosplugin.guarded
def main():
 argp = argparse.ArgumentParser()
 argp.add_argument('-v', '--verbose', action='count', default=0)
 args = argp.parse_args()
 check = nagiosplugin.Check(Logging())
 check.main(args.verbose)

if __name__ == '__main__':
 main()

The verbosity level is set in the check.main() invocation depending on
the number of “-v” flags. Let’s test this check:

$ check_verbose.py
LOGGING OK - zero is 0 | zero=0
warning message (check_verbose.py:11)
$ check_verbose.py -v
LOGGING OK - zero is 0
warning message (check_verbose.py:11)
| zero=0
$ check_verbose.py -vv
LOGGING OK - zero is 0
warning message (check_verbose.py:11)
info message (check_verbose.py:12)
| zero=0
$ check_verbose.py -vvv
LOGGING OK - zero is 0
warning message (check_verbose.py:11)
info message (check_verbose.py:12)
debug message (check_verbose.py:13)
| zero=0

When called with verbose=0, both the summary and the performance data are
printed on one line and the warning message is displayed. Messages logged with
warning or error level are always printed.
Setting verbose to 1 does not change the logging level but enable multi-line
output. Additionally, full tracebacks would be printed in the case of an
uncaught exception.
Verbosity levels of 2 and 3 enable logging with info or debug levels.

This behaviour conforms to the “Verbose output” suggestions found in the
Nagios plug-in development guidelines [http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN39].

The initial verbosity level is 1 (multi-line output). This means that tracebacks
are printed for uncaught exceptions raised in the initialization phase (before
Check.main() is called). This is generally a good thing. To suppress
tracebacks during initialization, call guarded()
with an optional verbose parameter. Example:

@nagiosplugin.guarded(verbose=0)
def main():
 [...]

Note

The initial verbosity level takes effect only until Check.main()
is called with a different verbosity level.

It is advisable to sprinkle logging statements in the plugin code, especially
into the resource model classes. A logging example for a users check could look
like this:

class Users(nagiosplugin.Resource):

 [...]

 def list_users(self):
 """Return list of logged in users."""
 _log.info('querying users with "%s" command', self.who_cmd)
 users = []
 try:
 for line in subprocess.check_output([self.who_cmd]).splitlines():
 _log.debug('who output: %s', line.strip())
 users.append(line.split()[0].decode())
 except OSError:
 raise nagiosplugin.CheckError(
 'cannot determine number of users ({} failed)'.format(
 self.who_cmd))
 _log.debug('found users: %r', users)
 return users

Interesting items to log are: the command which is invoked to query the
information from the system, or the raw result to verify that parsing works
correctly.

Topic Guides

Topic guides are meant as explanatory tests which expand on one specific area of
the library. Expect more to come here.

	Plugin Debugging
	An uncaught exception makes the plugin return UNKNOWN. Where is the cause?

	A Check constructor dies with “cannot add type <…>”

	I’m trying to use pdb but I get a timeout after 10s

Plugin Debugging

Debugging plugins can sometimes be complicated since there are so many classes,
which are tied together in an implicit way. I have collected some frequent
questions about debugging.

An uncaught exception makes the plugin return UNKNOWN. Where is the cause?

When your plugin raises an exception, you may get very little output. Example:

$ check_users.py
USERS UNKNOWN: RuntimeError: error

Set the verbose parameter of main()
to some value greater than zero and you will get the full traceback:

$ check_users.py -v
USERS UNKNOWN: RuntimeError: error
Traceback (most recent call last):
 File "nagiosplugin/runtime.py", line 38, in wrapper
 return func(*args, **kwds)
 File "nagiosplugin/examples/check_users.py", line 104, in main
 check.main(args.verbose, args.timeout)
 File "nagiosplugin/check.py", line 110, in main
 runtime.execute(self, verbose, timeout)
 File "nagiosplugin/runtime.py", line 118, in execute
 with_timeout(self.timeout, self.run, check)
 File "nagiosplugin/platform/posix.py", line 19, in with_timeout
 func(*args, **kwargs)
 File "nagiosplugin/runtime.py", line 107, in run
 check()
 File "nagiosplugin/check.py", line 95, in __call__
 self._evaluate_resource(resource)
 File "nagiosplugin/check.py", line 73, in _evaluate_resource
 metrics = resource.probe()
 File "nagiosplugin/examples/check_users.py", line 57, in probe
 self.users = self.list_users()
 File "nagiosplugin/examples/check_users.py", line 34, in list_users
 raise RuntimeError('error')
RuntimeError: error

A Check constructor dies with “cannot add type <…>”

When you see the following exception raised from
Check() (or Check.add()):

UNKNOWN: TypeError: ("cannot add type <class '__main__.Users'> to check", <__main__.Users object at 0x7f0c64f73f90>)

chances are high that you are trying to add an object that is not an instance
from Resource, Context, Summary, or Results or its subclasses. A common
error is to base a resource class on object instead of
Resource.

I’m trying to use pdb but I get a timeout after 10s

When using an interactive debugger like pdb on plugins, you may experience that
your debugging session is aborted with a timeout after 10 seconds. Just set the
timeout parameter in main() to 0 to avoid
this.

API docs

The nagiosplugin module consists of several submodules which are
discussed in detail as follows. Refer to the “First steps with nagiosplugin” section for an
introduction on how to use them for typical plugins.

	Core API
	nagiosplugin.check

	nagiosplugin.resource

	nagiosplugin.context

	nagiosplugin.summary

	nagiosplugin.runtime

	Intermediate data API
	nagiosplugin.metric

	nagiosplugin.state
	State subclasses

	nagiosplugin.performance

	nagiosplugin.range

	nagiosplugin.result

	Auxiliary Classes
	nagiosplugin.cookie

	nagiosplugin.logtail

Core API

The core API consists of all functions and classes which are called in
a plugin’s main function. A typical main function is decorated with
guarded() and creates a
Check object. The check instance is fed with
instances of Resource,
Context, or
Summary (respective custom subclasses). Finally,
control is passed to the check’s main() method.

Note

All classes that plugin authors typically need are imported into the
nagiosplugin name space. For example, use

import nagiosplugin
...
check = nagiosplugin.Check()

to get a Check instance.

nagiosplugin.check

Example: Skeleton main function

The following pseudo code outlines how Check is typically used in
the main function of a plugin:

def main():
 check = nagiosplugin.Check(MyResource1(...), MyResource2(...),
 MyContext1(...), MyContext2(...),
 MySummary(...))
 check.main()

nagiosplugin.resource

nagiosplugin.context

Example ScalarContext usage

Configure a ScalarContext with warning and critical ranges found in
ArgumentParser’s result object args and add it to a check:

c = Check(..., ScalarContext('metric', args.warning, args.critical), ...)

nagiosplugin.summary

nagiosplugin.runtime

Intermediate data API

The following classes allow to handle intermediate data that are used during the
plugin’s execution in a structured way. Most of them are used by the
nagiosplugin library itself to create objects which are passed into
code written by plugin authors. Other classes (like
Metric) are used by plugin authors to generate
intermediate data during acquisition or evaluation steps.

Note

All classes that plugin authors typically need are imported directly into the
nagiosplugin name space. For example, use

import nagiosplugin
...
result = nagiosplugin.Result(nagiosplugin.Ok)

to get a Result instance.

nagiosplugin.metric

nagiosplugin.state

Note

ServiceState is not imported into the nagiosplugin
top-level name space since there is usually no need to access it directly.

State subclasses

The state subclasses are singletons. Plugin authors should use the class
name (without parentheses) to access the instance. For example:

state = nagiosplugin.Critical

nagiosplugin.performance

nagiosplugin.range

nagiosplugin.result

Auxiliary Classes

nagiosplugin’s auxiliary classes are not strictly required to write checks, but
simplify common tasks and provide convenient access to functionality that is
regularly needed by plugin authors.

Note

All classes that plugin authors typically need are imported directly into the
nagiosplugin name space. For example, use

import nagiosplugin
...
with nagiosplugin.Cookie(path) as cookie:
 # ...

to get a cookie.

nagiosplugin.cookie

Cookie example

Increment a connection count saved in the cookie by self.new_conns:

with nagiosplugin.Cookie(self.statefile) as cookie:
 cookie['connections'] = cookie.get('connections', 0) + self.new_conns

Note that the new content is committed automatically when exiting the with
block.

nagiosplugin.logtail

LogTail example

Calls process() for each new line in a log file:

cookie = nagiosplugin.Cookie(self.statefile)
with nagiosplugin.LogTail(self.logfile, cookie) as newlines:
 for line in newlines:
 process(line.decode())

Glossary

	acquisition

	First step of check execution in the context of the nagiosplugin
library. Data is retrieved from the system under surveillance using custom
code. This is where the meat of a plugin is. Data acquisition is performed
by one or more domain model objects which are usually
Resource subclasses.

	domain model

	One or more classes that abstract the properties of the system under
surveillance that are relevant for the check. The domain model code should
not be interspersed with secondary aspects like data representation or
interfacing with outside monitoring infrastructure.

	evaluation

	Second step of check execution in the context of the nagiosplugin library.
Data generated in the acquisition step is evaluated according to
criteria specified in Context objects.

	Nagios plugin API

	Documents that define how a Nagios/Icinga compatible plugin must be called
and how it should respond. There is a main document [http://nagiosplug.sourceforge.net/developer-guidelines.html] and an appendix for
Nagios 3 extensions [http://nagios.sourceforge.net/docs/3_0/pluginapi.html].

	perfdata

	See performance data.

	performance data

	Part of the plugin output which is passed to external programs by Nagios.

	presentation

	Third step of check execution in the context of the nagiosplugin library.
Outcomes from the evaluation step are condensed into a compact
summary which is suited to inform the admin about relevant system state.
Data presentation is the responsibility of
Summary objects which also generate the
performance data output section.

	range

	String notation defined in the Nagios plugin API to express a set
of acceptable values. Values outside a range trigger a warning or critical
condition.

	unit of measure

	Property of a metric which is returned in
Performance Data and is used for example as axis label in
performance graphs. Nagios plugins should only use base units like s,
B, etc. instead of scaled units like days, MiB etc.

	uom

	See Unit of Measure.

Release History

1.3.0 (2019-11-08)

	New maintainer/contributor information and project home

	Updated tests and package metadata for recent Python 3 versions

	Newer tooling for tests/documentation

1.2.4 (2016-03-12)

	Add optional keyword parameter verbose to Runtime.guarded(). This parameter
allows to set verbose level in the early execution phase (#13).

	Allow Context.evaluate() return either a Result or ServiceState object. In
case the latter is returned, it gets automatically wrapped in a Result object
(#6).

1.2.3 (2015-10-30)

	Fix bug that caused a UnicodeDecodeError when using non-ASCII characters in
fmt_metric (#12).

	Print perfdata always on a single line (even in multi-line mode) to improve
compatibility with various monitoring systems (#11).

1.2.2 (2014-05-27)

	Mention that nagiosplugin also runs with Python 3.4 (no code changes
necessary).

	Make name prefix in status output optional by allowing to assign None to
Check.name.

	Accept bare metric as return value from Resource.probe().

	Fix bug where Context.describe() was not used to obtain metric description
(#13162).

1.2.1 (2014-03-19)

	Fix build failures with LANG=C (#13140).

	Remove length limitation of perfdata labels (#13214).

	Fix formatting of large integers as Metric values (#13287).

	Range: allow simple numerals as argument to Range() (#12658).

	Cookie: allow for empty state file specification (#12788).

1.2 (2013-11-08)

	New Summary.empty method is called if there are no results present (#11593).

	Improve range violation wording (#11597).

	Ensure that nagiosplugin install correctly with current setuptools (#12660).

	Behave and do not attach anything to the root logger.

	Add debugging topic guide. Explain how to disable the timeout when using pdb
(#11592).

1.1 (2013-06-19)

	Identical to 1.1b1.

1.1b1 (2013-05-28)

	Made compatible with Python 2.6 (#12297).

	Tutorial #3: check_users (#11539).

	Minor documentation improvements.

1.0.0 (2013-02-05)

	LogTail returns lines as byte strings in Python 3 to avoid codec issues
(#11564).

	LogTail gives a line-based iterator instead of a file object (#11564).

	Basic API docs for the most important classes (#11612).

	Made compatible with Python 2.7 (#11533).

	Made compatible with Python 3.3.

1.0.0b1 (2012-10-29)

	Improve error reporting for missing contexts.

	Exit with code 3 if no metrics have been generated.

	Improve default Summary.verbose() to list all threshold violations.

	Move main source repository to https://bitbucket.org/gocept/nagiosplugin/
(#11561).

1.0.0a2 (2012-10-26)

	API docs for the most important classes (#7939).

	Added two tutorials (#9425).

	Fix packaging issues.

1.0.0a1 (2012-10-25)

	Completely reworked API. The new API is not compatible with the old 0.4 API so
you must update your plugins.

	Python 3 support.

	The Cookie class is now basically a persistent dict and accepts key/value
pairs. Cookie are stored as JSON files by default so they can be inspected by
the system administrator (#9400).

	New LogTail class which provides convenient access to constantly growing log
files which are eventually rotated.

0.4.5 (2012-06-18)

	Windows port. nagiosplugin code now runs under pywin32 (#10899).

	Include examples in egg release (#9901).

0.4.4 (2011-07-18)

Bugfix release to fix issues reported by users.

	Improve Mac OS X compatibility (#8755).

	Include examples in distribution (#8555).

0.4.3 (2010-12-17)

	Change __str__ representation of large numbers to avoid scientific notation.

0.4.2 (2010-10-11)

	Packaging issues.

0.4.1 (2010-09-21)

	Fix distribution to install correctly.

	Documentation: tutorial and topic guides.

0.4 (2010-08-17)

	Initial public release.

 Python Module Index

 n

 		 	

 		
 n	

 	
 	
 nagiosplugin	

Index

 A
 | D
 | E
 | N
 | P
 | R
 | U
 | V

A

 	
 	acquisition

D

 	
 	debugging

 	
 	domain model

E

 	
 	evaluation

N

 	
 	Nagios plugin API

 	
 	nagiosplugin (module)

P

 	
 	pdb

 	perfdata

 	
 	performance data

 	presentation

R

 	
 	range

U

 	
 	unit of measure

 	
 	uom

V

 	
 	
 verbose

 	traceback

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 nagiosplugin Documentation

 		
 The nagiosplugin library

 		
 About

 		
 Feedback and Suggestions

 		
 License

 		
 Documentation

 		
 Acknowledgements

 		
 First steps with nagiosplugin

 		
 Key concepts

 		
 Classes overview

 		
 Tutorials

 		
 Tutorial #1: ‘Hello world’ check

 		
 Tutorial #2: check_load

 		
 Tutorial #3: check_users

 		
 Topic Guides

 		
 Plugin Debugging

 		
 An uncaught exception makes the plugin return UNKNOWN. Where is the cause?

 		
 A Check constructor dies with “cannot add type <…>”

 		
 I’m trying to use pdb but I get a timeout after 10s

 		
 API docs

 		
 Core API

 		
 nagiosplugin.check

 		
 nagiosplugin.resource

 		
 nagiosplugin.context

 		
 nagiosplugin.summary

 		
 nagiosplugin.runtime

 		
 Intermediate data API

 		
 nagiosplugin.metric

 		
 nagiosplugin.state

 		
 nagiosplugin.performance

 		
 nagiosplugin.range

 		
 nagiosplugin.result

 		
 Auxiliary Classes

 		
 nagiosplugin.cookie

 		
 nagiosplugin.logtail

 		
 Glossary

 		
 Release History

 		
 1.3.0 (2019-11-08)

 		
 1.2.4 (2016-03-12)

 		
 1.2.3 (2015-10-30)

 		
 1.2.2 (2014-05-27)

 		
 1.2.1 (2014-03-19)

 		
 1.2 (2013-11-08)

 		
 1.1 (2013-06-19)

 		
 1.1b1 (2013-05-28)

 		
 1.0.0 (2013-02-05)

 		
 1.0.0b1 (2012-10-29)

 		
 1.0.0a2 (2012-10-26)

 		
 1.0.0a1 (2012-10-25)

 		
 0.4.5 (2012-06-18)

 		
 0.4.4 (2011-07-18)

 		
 0.4.3 (2010-12-17)

 		
 0.4.2 (2010-10-11)

 		
 0.4.1 (2010-09-21)

 		
 0.4 (2010-08-17)

